
LA-UR-16-24055
Approved for public release; distribution is unlimited.

Title: ASC/NGC Gitlab Tutorial

Author(s): Junghans, Christoph

Intended for: Report

Issued: 2016-06-10

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for
the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

Slide 1 U N C L A S S I F I E D

ASC/NGC Gitlab Tutorial
 $ man gittutorial{,-2} | gitlab.lanl.gov

 Christoph Junghans, CCS-7

June 8, 2016

Slide 2 U N C L A S S I F I E D

Pull request Workflow

Slide 3 U N C L A S S I F I E D

Version Control Systems in a Nutshell

VCS manage changes to documents or source code.
Definitions:
•  Repository: data structure which stores metadata for a

set of files and/or directory structure
•  Patch: unified way to represent a change
•  Commit: adding a patch (with a message) to the VCS
•  Checkout: Get a certain version from the repository
•  Diff: representation of a commit in patch format
•  Revision: A certain (previous) state of the repository
•  Rollback: Go back to an older version

Slide 4 U N C L A S S I F I E D

Exercise – Manual diffing and patching

•  Create a file:
"seq 1 10 > file"

•  "cp file file.old"
•  Edit file
•  Create a patch:"diff -u

file file.old > patch"
•  "rm file.old"
•  Apply patch:

"patch –p0 <patch"

•  Look at patchfile
– Header
– Line-wise remove

and add
•  Linus: "We literally

used tarballs and
patches, which is a
much superior source
control management
system than CVS is."

Slide 5 U N C L A S S I F I E D

Brief VCS history

•  Version control systems (VCS) have been around for a
long time:
–  1st generation: SCCS (72), RCS (82)
–  2nd generation: CVS (90), Subversion (2000)
–  3rd generation:

!  Mercurial/hg (2005)
!  Git (2005)
!  Gnu Arch (2001)
!  Bazaar (2005)

•  Mainly two groups: Centralized (CVCS) and distributed
(DVCS)

Slide 6 U N C L A S S I F I E D

Centralized Version Control Systems

Slide 7 U N C L A S S I F I E D

Distributed Version Control Systems

Slide 8 U N C L A S S I F I E D

CVCS vs. DVCS

Centralized VCS:
•  Checkout contains a

single version
•  History lives on server
•  Commits are

versioned
•  Backup
•  Access via account
•  Examples: CVS, SVN

Distributed VCS:
•  Checkout contains all

versions
•  History lives locally
•  Commits are local
•  Commits build a

graph
•  Circle of trust
•  Examples: git, hg

Slide 9 U N C L A S S I F I E D

Why git?

•  Distributed version control allows better workflows
–  No locking
–  No blocking commits
–  No half-finished feature in the main line
–  Partial merges possible

•  Git is the most versatile tool
•  Mercurial isn't bad, but poor branching model
•  Git vs. Mercurial: Git seems to win the war
•  CVS – stop living in the past
•  SVN – has its right to exist (big files, restricted access)

Slide 10 U N C L A S S I F I E D

Some words of warning

•  Git is different
–  Don't ask, "I did this in CVS, how do I do that in Git."

•  Git has about 70 subcommands, I only know 20
–  Don't try to understand every detail

•  Git is a pro-tool (like rm), it can destroy data
–  If you did something wrong, don’t touch it (like rm)

•  Once shared (pushed) commits are hard to contain
–  Think before sharing (like on facebook)
–  Git is never central, even if you try very very hard

•  Git’s community is not for everyone
–  Friendly alternative: git@lanl.gov

Slide 11 U N C L A S S I F I E D

Making a repository

•  "git clone <URL>”
–  URL = path, http{,s}, git, scp notation

•  "git init" – create empty repo
•  Repository = Working directory + ".git" folder

–  There are bare/mirror repos without working directory, mainly for
server

•  Clone = init + pull + "add remote"
•  Exercise:

–  Clone gitlab-course/gitlab-course from gitlab.lanl.gov
(use https “-c http.sslVerify=false” option, mind proxy)

–  Init another repo, pull changes from local repo
"git init repo2", "cd repo2", "git pull ../gitlab-course"

Slide 12 U N C L A S S I F I E D

Git at LANL and on the IC machines

•  LANL makes it hard! Custom https certificates and non-
transparent proxy setups are so 80’s!
–  Stonix update will solve https issue

•  Git respects http_proxy, https_proxy
–  export http_proxy=proxyout.lanl.gov:8080

•  Git can do ssh hopping
–  echo "ssh wtrw ssh $@" > ssh_wtrw
–  export GIT_SSH=ssh_wtrw
–  Use ssh whenever you can
–  Fancy version: https://hpc.lanl.gov/index.php?q=turq_scm_hints

•  Use gitlab.lanl.gov for collaborative work inside LANL

Slide 13 U N C L A S S I F I E D

Git setup

•  Git supports local and global settings
•  Identify yourself

–  “git config (--global) user.name 'J. Robert Oppenheimer' "
–  "git config --global user.email 'rjo@lanl.gov' "
–  Id string will NOT be used for authentication! (Circle of Trust)
–  Exercise:

!  Setup up email, commit name globally
!  Use your secret identity for one of the two repos
!  Have a look at ~/.gitconfig and .git/config

•  Use color: "git config --global color.ui true"
(Pointless in newer versions)

Slide 14 U N C L A S S I F I E D

Making a commit

•  Make a change
•  Stage files

–  "git add file"
–  "git add –u"

!  Never use “git add -A”
!  “git add –p” to stage

parts

•  Check status
–  "git status"

•  "git commit"

Commits are local, don’t try to
make them global by pushing
instantaneously:
"Commit Often, Perfect Later,
Publish Once"

Slide 15 U N C L A S S I F I E D

Writing a good commit message

•  A commit message should be useful!
–  "Test", "Fix a bug", "Make something work" or "Not an empty

message" is NOT useful

•  Take 30 secs, it will be in logs forever
•  Git convention:

–  1st line: summary 50 char
–  2nd line: empty
–  >3rd line: details

•  Made a mistake? No worries, "git commit --amend" is
your friend! (Don't use if commit is already shared.)

Slide 16 U N C L A S S I F I E D

Exercise – Making a commit

•  Edit a file (FILE)
•  "git diff"
•  "git add FILE"
•  "git diff --cached"
•  "git status"
•  "git commit"
•  "git log -p"
•  Pull that commit into

the other repo

•  Commit generates a
hash that contains all
metadata

•  Hash is unique
•  Commits are local
•  Commits are NOT

file-based
•  Use EDITOR env.

variable to change the
default editor

Slide 17 U N C L A S S I F I E D

Exchanging commits

•  Commit can be shared via push and pull mechanism
–  "pull" means: get a change from someone you trust
–  "push" means: propagating a change to a place you have write

permissions to

•  Not every single commit needs to be pushed!
•  Pulling is preferred (except for bare repos - needs push)

–  Pushing to a normal repo brings workdir out of sync
–  Pulling usually involves a merge (Pull = fetch + merge)
–  Pulling gives control over whom you trust
–  Push and Pull are not symmetric

•  Commits can be transferred as files
–  "git format-patch" + "git am"

Slide 18 U N C L A S S I F I E D

Exercise – Mail a patch (more academic)

•  Make a commit
•  "git format-patch X"

X=hash of the parent
(look-up in "git log")

•  Copy file to the other
repo, apply it using
"git am <file>"

•  "git log --pretty=full"

•  Hash has changed, so git
won't know it is the same
change! - "Think before
pushing"

•  Committer and author
can differ

•  Think again, who do you
trust

•  Hashes can be
abbreviated (1st 8
characters)

Slide 19 U N C L A S S I F I E D

Branches and logical names (revs)

•  Many git commands can act on a hash
–  “git diff HASH”, “git log HASH”

•  Using hashes directly is a bit cumbersome
•  Logical names (convert to hash: "git rev-parse XXX")

–  HEAD – the latest commit
–  FETCH_HEAD – fetched hash, ORIG_HEAD, MERGE_HEAD
–  Tags, Branch names
–  Ancestors (^/~)

!  HEAD^/HEAD~ - HEAD's 1st parent
!  HEAD^^/HEAD~~ - HEAD's 1st parent's 1st parent
!  HEAD^2 – HEAD's 2nd parent (only valid for merges)
!  HEAD^2~ - HEAD's 2nd parent's 1st parents

Slide 20 U N C L A S S I F I E D

Branches & tags

•  Tags are just human-readable names for hashes
–  E.g. "git tag last_working_version HEAD^"
–  Tags can be annotated (Author and Message) to be descriptive
–  Tags are local, but can be pushed, pulled

•  Branches are just sticky tags
–  Branch name moves with the commit (if HEAD has a name at

commit time)
–  Branches are local until shared

•  Git supports unnamed Branches, too
•  "git branch"

–  Default branch is "master", but not special

Slide 21 U N C L A S S I F I E D

Exercise - Pull from a remote, adding a remote

•  Select random host
•  Pull changes from

that machine
•  Check with ssh first
•  "git pull

user@host:path
master" (scp notat.)

•  Conflict? Fix it, then
“git add -u”
“git commit”

•  Typing user@host:path is
very cumbersome

•  Add a remote: "git remote
add NAME URL"

•  “git remote update”
•  "git pull NAME master"
•  Look at remote branches:

"git branch -r" (or "-a")
•  Default remote: "origin"

Slide 22 U N C L A S S I F I E D

Git vs. Mercurial vs. others

CVS SVN Git Hg
Distributed X X
Centralized X X
Branches X X (copies) X 2X
Tags X X X X
Web-Server X
Large Files X X X(ext.) X (ext.)
Compression X X
Global rev# X (per file) X X (per repo)
Keywords X X X (only Id) X (ext.)
Commands 30 34 >70 22
Dependencies C C++ C, Perl, Bash C, Python

Slide 23 U N C L A S S I F I E D

More about branches

•  Create a branch “git checkout –b NAME START”
–  Use "--track " option to create a branch map
–  Default START hash is HEAD

•  "git branch"
–  -d delete: fully merged branch, -D force remove

(Note: -d/-D just removes the name, not the commits themselves)
–  -m move/ -M force move

•  Pushing branches (if not tracked)
–  "git push REMOTE FROM:TO" (names can be crossed)

(use empty FROM, to remove name on remote)

•  Hashes as just unnamed branches
•  One can use repos in different dirs instead of branches

Slide 24 U N C L A S S I F I E D

Diffing branches / revs

•  Simple diff of workdir: “git diff REV”
•  Diff of missing parts (since last common ancestor)

–  "git diff REV1...REV2" (Mind 3 dots!)
–  "git log REV1...REV2"

•  Looking at the graph of merges
–  "gitk"
–  "git log --graph"
–  “git log --decorate --oneline –graph”

•  Full diff: "git diff REV1..REV2” (2 dots)
–  "git log –left-right -p REV1..REV2" easier to read

Slide 25 U N C L A S S I F I E D

Exercise – Showing differences

•  Select another
random host

•  Fetch other host's
master: "git fetch URL
master"

•  Find out what differs
(use FETCH_HEAD)

•  How many commits
have been made?

•  Good commit msg?

•  Create a new branch
“git checkout -b ..”

•  Commit on the branch
•  Switch back to master

"git checkout master"
•  Try to remove it

"git branch -d NAME"
•  Merge the branch

"git merge NAME"
•  Try to remove it again

Slide 26 U N C L A S S I F I E D

Merging revs

•  Pull implies a merge
•  Git will remember,

which parts have
been merge before
“git branch –contains”

•  Git can remember
merge resolutions:
"git config --global
rerere.enabled true"
("reuse recorded

•  resolution")

No-fast-forward vs. fast-forward
merge.

Slide 27 U N C L A S S I F I E D

More a about merging

•  Git has different merging strategies (“-s” option)
–  "resolve" (default)
–  “recursive” – Suboption (-X) “ignore-all-space” (yeah!)
–  "ours" – "Ok, we will merge your feature" (if we have to)
–  "octopus" – for more than two heads

•  Alternatives (changing hashes)
–  Pick a single commit: “git cherry-pick"
–  Use patches "git format-patch"
–  Squashing commits: "git rebase" – very

useful on local banch!

•  Server repo, one needs to merge
before push.

Slide 28 U N C L A S S I F I E D

Branch models

•  Branches/Merges are easy: “Best practice is branch out,
merge often and keep always in sync"

•  Branches can be used for every new feature
(development) and removed afterwards

•  Linux kernel:
–  Different repos (trees) for different architectures
–  Branch for stable, development, features and next
–  Rebase on local branches before pushing

•  Scientific Project
–  Stable, dev, next branch
–  Bug fixes get merged up (stable -> dev)
–  Test etc. live in submodules

Slide 29 U N C L A S S I F I E D

Contribution models

•  Distributed nature, git allows many contribution models:
–  Email ("git am")
–  Pull
–  Push

•  Server - push mechanism
–  Ssh key management using gitolite, keys are in git repo

themselves, restricted shell

•  Github/Gitlab/Bitbucket as web platform
–  Fork (clone) a repo, make commit, send pull request
–  Pull request involves code review
–  Project policy: Commit gets merged or rebased, squash rebased

Slide 30 U N C L A S S I F I E D

Collaboration using gitlab

•  Open-source version of github.com
•  Instances: gitlab.lanl.gov and git.lanl.gov
•  Fork and merge model (with review and

contious testing)
•  Comes with Issue tracker

and wiki
•  Cross-project referencing
•  Magic commit messages

–  “bla bla (fixes #23)”
–  “bla bla (Related to #23)”

Slide 31 U N C L A S S I F I E D

Exercise: Account Setup

•  Create an ssh-key pair: “ssh-keygen”
•  Primer on ssh-keys: Public key goes

on the server, private key is private
•  Go to gitlab.lanl.gov
•  Login using Moniker/Cryto
•  “Profile Settings” (on the left)

–  “SSH Keys” (on the left)
–  “Add a new key” (on the top right)

•  Paste the content of the public key (.pub file)
•  Try connection/setup: ssh git@gitlab.lanl.gov

Slide 32 U N C L A S S I F I E D

Pull request Workflow

Slide 33 U N C L A S S I F I E D

Exercise: Fork a repo, push on a branch

•  Go to https://gitlab.lanl.gov/gitlab-course/gitlab-course
•  Fork the repo (by clicking Fork) into your namespace
•  Go to your local gitlab-course (the one with gitlab as

origin remote)
•  Add your Fork as a remote: “git remote add mygitlab

 git@gitlab.lanl.gov:MONIKER/gitlab-course.git”
•  Create a local branch: “git checkout -b killer_feature”
•  Try to push the branch to the main repo (will fail):

“git push origin killer_feature”
•  Push to your fork: “git push mygitlab killer_feature”

Slide 34 U N C L A S S I F I E D

Create a pull request

•  Go to your fork on gitlab.lanl.gov
•  “Merge Requests” (on the left)
•  “New Merge Request” (top right)
•  Pick your newly create branch (e.g. “killer_feature”) as

source branch
•  Look a the diff
•  Write a merge request message
•  Tag Ondrej on it (@certik)
•  Open an issue complain about Ondrej’s slowness in

reviewing and assign it to Christoph

Slide 35 U N C L A S S I F I E D

Code Review

•  A code review has two parts
–  Auto-mated testing
–  Human interaction

•  Don’t break tests!
•  Be open for critics (these

poor guys have to maintain
your crap till the end of time)

•  Write Documentation now
•  Don’t be shy, the sole purpose of Code Review is to

improve code quality.
•  Don’t create to large pull request, one feature at the time

Slide 36 U N C L A S S I F I E D

Behind the Scenes

•  CI in gitlab is based on docker
•  Docker is like fakeroot, but in cool & safe
•  Kernel feature

–  Newer kernels can run docker in userspace
–  For older kernel use double virtualization

workaround

•  Basically no overhead for
virtualization

•  User has “root” inside the container to e.g. install
packages

Slide 37 U N C L A S S I F I E D

Exercise: Make your reviewer happy

•  Add another commit
to your branch as per
Ondrej’s suggestion
and refer to an issue
in commit message

•  Push it to your fork
•  Check if pull-request

got updated
•  Ask Ondrej to review

again!

CODE

Slide 38 U N C L A S S I F I E D

Checking out pull requests

•  Pull requests can be checked out and tested locally:
–  “git fetch origin merge-requests/NR/head &&

git checkout FETCH_HEAD”
(merge-requests/NR/head is a special reference name in gitlab)

•  Can be make an alias (put this in your ~/.gitconfig)
[alias]

 pr-github = !sh -c 'git fetch origin pull/$1/head:pr-$1 &&
 git checkout pr-$1' -
 pr-stash = !sh -c 'git fetch origin pull-requests/$1/from:pr-$1 &&
 git checkout pr-$1' -
 pr-gitlab = !sh -c 'git fetch origin merge-requests/$1/head:pr-$1
 && git checkout pr-$1' -

Use “git pr-github”, “git pr-stash”, “git pr-gitlab”

Slide 39 U N C L A S S I F I E D

Other git pearls

•  Auto-add files: “git commit -a”
•  Stash changes away without committing: "git stash"
•  Grep from certain version: “git grep”
•  Show files, part of git in workdir: "git ls-files"
•  Who introduced that bug? "git blame FILE"
•  Launch a web-server: "git instaweb"
•  Clean up repo: "git clean”, together with .gitignore
•  Check repo "git fsck"
•  Shallow clones: "git clone --depth=X"

Slide 40 U N C L A S S I F I E D

Other cool git things

•  Git hooks
•  Git attributes
•  Git submodules, bisect
•  Git sparse checkout
•  git annex (Hello, haskell fans!)
•  Gerrit Code-Review
•  git fs & git lfs
•  Github
•  Git's interface to mediawiki
•  Git as CVS/SVN client

Slide 41 U N C L A S S I F I E D

More resources

•  "man gittutorial{,-2}"
•  git XXX --help | grep Examples
•  Video: https://youtu.be/ZDR433b0HJY
•  Game: http://pcottle.github.com/learnGitBranching/
•  Simple: http://rogerdudler.github.io/git-guide/
•  For Ruby friends: http://gitimmersion.com/
•  Everything: http://git-scm.com/doc
•  Professional: https://www.udacity.com/course/ud775
•  Graphical: http://onlywei.github.io/explain-git-with-d3/

Slide 42 U N C L A S S I F I E D

Rebasing and other backup
slides

Slide 43 U N C L A S S I F I E D

Changing history

•  Rebase means
something like: re-
apply the commit
instead of merging it.
(different hash)

•  Git provides the very
powerful rebase
command

•  Safest way to use
"git pull --rebase"

“We have to go back”, but
changing the past is very
dangerous!

Slide 44 U N C L A S S I F I E D

Rebase vs. Merge

Rebase

Merge

Slide 45 U N C L A S S I F I E D

Rebase in practice

•  Rebase during pull
"git pull --rebase"

•  Explicit rebase
"git rebase BASE"
(won't merge)

•  Implicit rebase and
squash:
"git commit --amend"

•  Reworking a branch:
"git filter-branch"

Pushing rewritten branches: “Just
one command away from deleting
years of work – you have been
warned!”

Slide 46 U N C L A S S I F I E D

Exercise – Rebase a branch

•  Make a commit on
master

•  Create a branch
starting from HEAD^

•  Make some commits
•  Rebase new branch

on master:
"git pull --rebase .
master"

•  Run gitk --all
•  See if the commit msg

shows up twice
•  Compare SHA
•  Old SHA is still there

"git log ORIG_HEAD"
•  Rebasing can break

correctness of
intermediate commits!

Slide 47 U N C L A S S I F I E D

Undoing things

•  Undo edit: "git checkout -- file"
•  Undo add: "git reset HEAD -- file"
•  “git commit --amend”
•  Revert a commit by applying the reverse: "git revert"
•  "git reset" <REV>

–  "--hard" go back, useful to move branch heads
touches both workdir and stage

–  "--soft” bring back pre-commit stage
touches nothing (workdir and stage), just undo commit

–  "--mixed" (default), resets the stage but not the working tree

•  Squash: "git commit –fixup" + "git rebase --autosquash"

Slide 48 U N C L A S S I F I E D

Exercise – Squash a branch into one commit

•  Tag your current
HEAD

•  Do some commits
with: "git commit
--squash=TAG"
(or --fixup=TAG)

•  Rebase into a single
commit onto TAG
using: "git rebase -i
--autosquash TAG^"

•  Try: “gitk
some_old_hash”

•  Remove TAG
"git tag -d TAG"

•  Run" git gc
--prune=all"

•  Old hashes are gone
•  Lost track, check git's

blackbox: "git reflog"

